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Outline

1. What are mixture approximations?
▶ Three different types of mixture approximations
▶ Convergence
▶ Practical implementation
▶ What can you do with them?

2. Mixture approximations for delay differential equations (DDEs)
▶ Examples of DDEs with distributed time delays
▶ The linear chain trick (DDEs → ODEs)
▶ Convergence
▶ Simulation example (bifurcation analysis)
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Mixture approximations
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Problem statement

Approximate the L1(D) function α with the following properties

1. Non-negative and bounded

0 ≤ α(t) ≤ K, t ∈ D

2. Integrates to one ∫
D
α(t) dt = 1

3. Continuous

The domain may be

▶ the real numbers, D = (−∞,∞),

▶ the non-negative real numbers, D = [0,∞), or

▶ an interval, D = [a, b]
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Example for D = (−∞,∞)

Skew normal distribution
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Mixture approximation

Approximate α by a sum of basis functions

α(t) ≈ α̂(t) =

M∑
m=0

cmℓm(t)

Weight constraints

M∑
m=0

cm = 1, 0 ≤ cm ≤ 1, m = 0, . . . ,M

Non-negative basis functions

ℓm(t) ≥ 0, m = 0, . . . ,M

Basis functions integrate to one∫
D
ℓm(t) dt = 1, m = 0, . . . ,M
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Gaussian, Erlang, and beta mixture approximations

Gaussian basis functions, t ∈ D = (−∞,∞)

ℓm(t) = bm exp

(
−1

2

(
t− µm

σm

)2
)
, bm =

1√
2πσ2

m

Erlang basis functions, t ∈ D = [0,∞)

ℓm(t) = bmtme−at, bm =
am+1

m!

Beta basis functions, t ∈ D = [0,∆t]

ℓm(t) = bmtm(∆t− t)M−m, bm =
1

∆tM+1

(M + 1)!

m!(M −m)!
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Example: Erlang mixture approximation (M = 90)
Folded normal mixture distribution
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Convergence of Erlang mixture approximations (M = ∞)
Coefficients

cm =

∫ sm+1

sm

α(s) ds, sm = m∆s, ∆s = 1/a (1)

Weak convergence (Tijms [1, 2])∫ t

0

α̂(s) ds →
∫ t

0

α(s) ds as a → ∞

Pointwise convergence (based on delta families [3])

α̂(t) → α(t) as a → ∞

Vitali’s convergence lemma∫ ∞

0

|α̂(s)− α(s)|ds → 0 as a → ∞

if
▶ α̂ converges pointwise
▶ α̂ is tight
▶ α̂ is uniformly integrable
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Convergence of beta and Gaussian mixture approximations

1. Beta mixture approximations, D = [0, 1]

▶ ℓm is a Bernstein polynomial scaled by M + 1

▶ pointwise convergence is guaranteed by Weierstrass’ approximation
theorem [4] as M → ∞

cm =
1

M + 1
α(sm), sm = m∆s, ∆s = 1/M,

cm =

∫ sm+1

sm

α(s) ds, sm = m∆s, ∆s = 1/(M + 1)

2. Gaussian mixture approximations, D = (−∞,∞)

▶ Error analysis by Maz’ya and Schmidt [5]

▶ Convergence proof by Sorenson and Alspach [6]
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Optimal coefficients and rate parameter
Time domain (k = 0, . . . , N − 1)∫ th

0

α(s) ds = 1− ϵ, tk = k/th

Least-squares optimization problem

min
{cm}M

m=0,a
ϕ =

1

2

N−1∑
k=0

(α(tk)− α̂(tk))
2∆t,

subject to

M∑
m=0

cm = 1,

0 ≤ cm ≤ 1, m = 0, . . . ,M,

amin ≤ a

▶ Use Matlab’s fmincon

▶ Provide analytical first- and second-order derivatives
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Example: Gaussian kernel

Kernel

α(t) =
2√
π
e−t2

Error

Eα =

Nα−1∑
k=0

(α̂(tk)− α(tk))
2∆t
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Differential equations with distributed time delays
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Delay differential equations
Logistic equation

ẋ(t) = x(t) (1− x(t))

General form (ODE)

ẋ(t) = f(x(t))

Logistic equation w. absolute time delay

ẋ(t) = x(t) (1− x(t− τ))

General form (DDE)

ẋ(t) = f(x(t), x(t− τ))

Logistic equation w. distributed time delay

ẋ(t) = x(t)

(
1−

∫ t

−∞
α(t− s)x(s) ds

)
General form (DDDE)

ẋ(t) = f(x(t),

∫ t

−∞
α(t− s)x(s) ds)
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Epidemiology

SIR model without delays

Ṡ(t) = −βS(t)I(t),

İ(t) = βS(t)I(t)− ηI(t),

Ṙ(t) = ηI(t)

SIR model with distributed time delay

Ṡ(t) = −βS(t)

∫ t

−∞
α(t− s)I(s) ds,

İ(t) = βS(t)

∫ t

−∞
α(t− s)I(s) ds− ηI(t),

Ṙ(t) = ηI(t)
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Diabetes

Stomach

Pylorus

Small instestine

Meal
glucose

Absorption

Ritschel, T.K.S., Reenberg, A.T., Carstensen, P.E., Bendsen, J., Jørgensen, J.B., 2023.
Mathematical Meal Models for Simulation of Human Metabolism. arXiv: 2307.16444.
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Molten salt nuclear reactor and nonuniform flow in pipes

Nuclear reactorHeat exchanger

Molten salt

Non-uniform velocity profile

Kernel for Hagen-Poiseuille flow (quadratic velocity profile)

Ritschel, T.K.S., 2025. Numerical Optimal Con-
trol for Distributed Delay Differential Equations: A
Simultaneous Approach based on Linearization of
the Delayed Variables. In: Proceedings of the 2025
European Control Conference (ECC), June 24-27,
Thessaloniki, Greece. arXiv: 2410.15083.
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Particle flow in velocity field
Particle subject to Stoke’s drag force and Basset history force

ẋp = up,

u̇p =
1

St
F(a)(up − uf )︸ ︷︷ ︸
Nonlinear drag

+C

∫ t

0

1√
t− s

(u̇p − u̇f ) ds︸ ︷︷ ︸
Basset history force

Collaboration with PhD candidate Zejian You,
Asst. Prof. Qi Wang, and Prof. Gustaaf Jacobs
from San Diego State University.

19 / 37



Linear chain trick (DDE → ODE)
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Linear chain trick
DDE with distributed time delay

ẋ(t) = f(x(t), z(t)), z(t) =

∫ t

−∞
α(t− s)x(s) ds

Approximate kernel

α(t) ≈ α̂(t) =

M∑
m=0

cmℓm(t)

Substitute into integral

z(t) ≈ ẑ(t) =

M∑
m=0

cm

∫ t

−∞
ℓm(t− s)x(s) ds =

M∑
m=0

cmzm(t)

Differentiate zm (ℓ̇0 = −aℓ0(t), ℓ̇m(t) = a(ℓm−1(t)− ℓm(t))

żm(t) = ℓm(0)x(t) +

∫ t

−∞
ℓ̇m(t− s)x(s) ds

=

{
a(x(t)− z0(t)), m = 0,

a(zm−1(t)− zm(t)), m > 0
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Approximate ODEs

System

˙̂x(t) = f(x̂(t), ẑ(t)), ẑ(t) =

M∑
m=0

cmzm(t)

Auxiliary memory states

ż0(t) = a(x̂(t)− z0(t)),

żm(t) = a(zm−1(t)− zm(t)), m = 1, . . . ,M

x̂ z0 z1 · · · zM

ẑ

a a a a

c0 c1 cM
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Approximate ODEs

Approximate ODEs

˙̂x(t) = f(x̂(t), ẑ(t)),

Ż(t) = AZ(t) +Bx̂(t),

ẑ(t) = CZ(t)

Matrices

A = a


1
−1 1

. . .
. . .

−1 1

 , B = a


1
 ,

C =
[
c0 c1 · · · cM

]
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Does the approximate state converge (M = ∞)?
Bound on state error [8, Thm. 1] when f is Lipschitz and x is bounded∫ ∞

0

|α̂(t)− α(t)|dt < ϵ ⇒ |x̂(t)− x(t)| ≤ ϵw(t) ≤ ϵw(tf )

Auxiliary function

w(t) = 0, t ∈ (−∞, t0],

ẇ(t) = LzKx + Lxw(t) + Lz

∫ t

−∞
α̂(t− s)w(s) ds, t ∈ [t0, tf ]

▶ The steady state of the approximate ODEs and the DDEs is the same

▶ The eigenvalues converge to the roots for the DDEs
(Hurwitz’ convergence theorem)

▶ Error dynamics are locally stable if the DDEs and ODEs are locally
stable

Ritschel, T.K.S., 2025. On Erlang Mixture Approximations for Differential Equations
with Distributed Time Delays. arXiv: 2502.12984. In submission.
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Numerical example: Simulation
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Numerical example
▶ System

Ṅ(t) = κN(t)

(
1− 1

K

∫ t

−∞
α(t− s)N(s) ds

)

▶ Kernel

α(t) = γ1F (t;µ1, σ1) + γ2F (t;µ2, σ2),

F (t;µ, σ) =
exp

(
− 1

2

(
t−µ
σ

)2)
+ exp

(
− 1

2

(
t+µ
σ

)2)
√
2πσ
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Numerical example: Bifurcation analysis

Model parameter Kernel parameter
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Numerical example: Bifurcation analysis

Model parameter Kernel parameter
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Numerical example: Bifurcation analysis
Model parameter Kernel parameter

The numerical simulations are obtained with Euler’s implicit method and
a right rectangle rule for approximating the integral.
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Kernel identification
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Kernel identification (with John Wyller, NMBU, Norway)

Forward problem

α, p, x0 x y

ẋ = f(x, z, p) y = g(x, p)

Inverse problem

Ritschel, T.K.S., Wyller, J., 2025. An Algorithm for Distributed Time Delay Identifi-
cation without A Priori Knowledge of the Kernel. Automatica 178, pp. 112382. DOI:
10.1016/j.automatica.2025.112382.
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Dynamical least-squares problem

min
{cm}M

m=0,a,p,x0

1

2

N∑
k=0

∥yk − y(tk)∥22

subject to

x(t0) = x0,

Z(t0) = Z0(x0, p),

ẋ(t) = f(x(t), z(t), p), t ∈ [t0, tf ],

Ż(t) = AZ(t) +Bx(t), t ∈ [t0, tf ],

z(t) = CZ(t), t ∈ [t0, tf ],

y(tk) = g(x(tk), p), k = 0, . . . , N,

M∑
m=0

cm = 1,

amin ≤ a,

pmin ≤ p ≤ pmax,

xmin ≤ x0 ≤ xmax
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Example
▶ System

Ṅ(t) = κN(t)

(
1− 1

K(t)

∫ t

−∞
α(t− s)N(s) ds

)
,

K(t) = (1 +A1 sin(2πω1t) +A2 sin(2πω2t))K̄

▶ Kernel

α(t) = γ1F (t;µ1, σ1) + γ2F (t;µ2, σ2),

F (t;µ, σ) =
exp

(
− 1

2

(
t−µ
σ

)2)
+ exp

(
− 1

2

(
t+µ
σ

)2)
√
2πσ
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Example
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Summary

1. Approximate L1(D) functions

α(t) ≈ α̂(t) =

M∑
m=0

cmℓm(t), t ∈ D

2. Approximate solution to DDEs with distributed time delays

ẋ(t) = f(x(t),

∫ t

−∞
α(t− s)x(s) ds)

3. Many different applications/possible extensions

▶ Model reduction

▶ Stochastic differential equations

▶ Continuous thermodynamics (chemical phase/reaction equilibria)

▶ Optimal/feedback/adaptive control for DDEs

▶ Controllers with memory for ODEs (PID, LQR, MPC, etc.)
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